If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-42t+48=0
a = 3; b = -42; c = +48;
Δ = b2-4ac
Δ = -422-4·3·48
Δ = 1188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1188}=\sqrt{36*33}=\sqrt{36}*\sqrt{33}=6\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{33}}{2*3}=\frac{42-6\sqrt{33}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{33}}{2*3}=\frac{42+6\sqrt{33}}{6} $
| 8x^2+2√3x-9=0 | | -4(3x-2)+4x=-8x-8(x+4 | | 21/7•b=31/2 | | 100=2l+2(l-3) | | 5v+2=-(v+4) | | 6x2-12x-210=0 | | 13x^2+1170x-234000=0 | | g÷7=4 | | q/4+ 9= 11 | | (x+7)2−11=0 | | 5g+80=100g-13 | | 3-5(2m-10)=2/3m+10 | | (2x-1)(x+1)=4 | | (2x-1)(x+1=4 | | C=6(y+3) | | 55w=385 | | 4a+5=2+2.35a | | 15f-6=9f+18 | | 55w=1,050 | | 8x+2x+6=86 | | -3/8+m=-1/5 | | 10=0+a•5 | | 55f=1050 | | Z=2x+-5 | | 2x-11=4x+23 | | r=22/2.25 | | 3y+2y+3=96 | | 3=-12+5r | | 5x-19=109 | | -10=(x+8)÷-7 | | x/3+x=252 | | -10+7z=-1+7z |